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ABSTRACT A genetic algorithm (GA), an optimization
procedure based on the theory of evolution, was com-
pared with nonlinear regression for the ability of the 2
algorithms to fit the coefficients of poultry growth mod-
els. It was hypothesized that the nonlinear approach of
using GA to define the parameters of growth equations
would better fit the growth equations than the use of
nonlinear regression. Two sets of growth data from the
literature, consisting of male broiler BW grown for 168
and 170 d, were used in the study. The growth data were
fit to 2 forms of the logistic model, the Gompertz, the
Gompertz-Laird, and the saturated kinetic models using
the SAS nonlinear algorithm (NLIN) procedure and a GA.
There were no statistical differences for the comparison
of the residuals (the difference between observed and
predicted BWs) of growth models fit by a GA or nonlinear
regression. The plotted residuals for the nonlinear regres-
sion and GA-determined growth values confirmed obser-
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INTRODUCTION

Numerous growth equations have been developed
to describe and fit the nonlinear sigmoid relationship
between growth and time. Growth curves for poultry
generally have the following characteristics: an acceler-
ating phase of growth from hatching, a point of inflec-
tion in the growth curve at which the growth rate is
maximum, a phase where growth rate is decelerating,
and a limiting value (asymptote) mature weight (Wil-
son, 1977). The fitting of nonlinear growth equations is
more difficult than for linear models. Traditional statis-
tical methods for nonlinear models require a starting
point to begin the optimization. Often the quality of the
final solution is dependent upon the position of this
starting point in the search space. For example, in fitting
a growth model function with the SAS NLIN procedure,
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vations of others that the residuals have oscillations
resembling sine waves that are not represented by the
growth models. It was found that GA could successfully
determine the coefficients of growth equations. A disad-
vantage of slowness in converging to the solution was
found for the GA. The advantage of GA over traditional
nonlinear regression is that only ranges need be specified
for the parameters of the growth equations, whereas esti-
mates of the coefficients need to be determined, and in
some programs the derivatives of the growth equations
need to be identified. Depending on the goal of the re-
search, solving multivariable complex functions with an
algorithm that considers several solutions at the same
time in an evolutionary mode can be considered an ad-
vantage especially where there is a chance for the solution
to converge on a local optimum when a global optimum
is desired. It was concluded that the fitting of the growth
equations was not so much a problem with the fitting
methodology as it is with the form of the equation.

instead of listing regression variables, as is done with
linear models, the nonlinear regression expression must
be written, the parameter names declared, and initial
parameter values specified. Coefficients and parameters
are estimated through an iterative approach. The SAS
manual (SAS Institute Inc., 1999) lists several iterative
methods of computation that are used including
steepest descent (gradient), Newton, Gauss-Newton,
Marquardt, and multivariate secant (DUD) methods.
The Marquardt method is a compromise between the
Gauss-Newton and steepest descent methods (Mar-
quardt, 1963). Some nonlinear regression models are
difficult to fit, and there is no guarantee that the proce-
dure picked can fit the model successfully (SAS Institute
Inc., 1999).

The use of genetic algorithms (GA) is a recently devel-
oped optimization approach that can be used as an alter-
native to regression analysis to fit mathematical models
(Goldberg, 1989; Michalewicz, 1992; Haupt and Haupt,

Abbreviation Key: GA = genetic algorithm; SAS NLIN = SAS nonlin-
ear algorithm.
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TABLE 1. Initial values for nonlinear regression and parameter ranges for genetic algorithm calculations

Nonlinear regression Genetic algorithm

Model Initial estimate Range of values

Logistic (Rogers et al., 19871)
Maximum response (A) 5845 5000 7000
Initial response (B) 9.34 7 10
Rate constant (K) 0.96 0.90 1.00
Predicted (N) −676 −600 −800

Gompertz (Rogers et al., 1987)
Maximum response, (A) 5800 5000 7000
Intercept (B) 58 50 70
Rate constant (K) 0.03 0.01 0.04

Saturation kinetics (Rogers et al., 1987)
Maximum response (A) 5800 5000 7000
Intercept (B) 6.7 0 150
Rate constant (K) 4000 0 30000
Kinetic order (N) 3 0 4

Gompertz-Laird (Aggrey, 2002)
Hatching weight (Wo) 44.6 40 50
Initial growth rate (L) 0.0908 0.08 0.10
Rate of decay (K) 0.0224 0.02 0.03

Logistic (Aggrey, 2002)
Asymptotic weight (Wa) 2192.7 2000 2300
Exponential growth rate (K) 0.0422 0.03 0.05
Age at maximum growth (ti) 72.7 70 75

1Data are from Rogers et al. (1987) and are used by permission.

1998). A GA is a computational method modeled on the
theory of biological evolutionary processes that can be
used to find optimal solutions. For example, GA can be
used to find the maximum and minimum of a function,
to find an optimal route on a map, or to minimize the
cost of products. In the problem set up, a GA estimation
does require an estimate of the parameter range in which
the solution values might be found for the problem.
The choice of a starting point plays a significant role in
finding a good solution to the problem with a large
number of local optima. Genetic algorithms, with their
many potential solutions approach, can search multiple
points simultaneously and, therefore, can avoid being
caught in a local optimum when a global optimum is
sought.

It was hypothesized that the nonlinear approach of
using GA to define parameters of growth equations
would better fit the growth equations than use of nonlin-
ear regression.

MATERIALS AND METHODS

Data

The BW data and growth models were based on re-
search results reported by Rogers et al. (1987) and Ag-
grey (2002). Growth data used in this study were
average values of male BW for a 168-d period (Rogers
et al., 1987) and of male BW for a 170-d period (Aggrey,
2002). Birds used in the study conducted by Rogers et
al. (1987) were Petersen × Arbor Acres, and those in
the study by Aggrey (2002) were from an unselected,
randomly mated Athens-Canadian poultry population.
Specific husbandry of those birds can be found in those
respective papers.

Growth Models

The growth models examined and fit were as follows:
•Logistic model, (Rogers, et al., 1987)

W = n + (A − n)/(1 + B × Yt)

where n = the predicted response as t (time) approaches
the negative asymptote, A = the maximum response, B
relates initial BW to potential response, and Y = time
constant.

•Gompertz model, (Rogers, et al., 1987)

W = A exp[−log(A/B) exp (−Kt)]

where W = the weight to age (t) with 3 parameters: A =
asymptotic or maximum growth response, B = intercept
or weight when age(t) = 0, and K = rate constant.

•Saturation kinetics model (Rogers, et al., 1987)

W = (bI + Ats)/(I + ts)

where W = the response of the chick, b = response inter-
cept, A = maximum response, I = nutrient rate constant,
and s = kinetic order of the response as t approaches
zero.

•Logistic model (Aggrey, 2002)

Wt = Wa/[1 + exp (−K (t − ti)]

where Wt = the BW at time t, Wa is the asymptotic BW,
K is the exponential growth rate, and ti is the age at the
inflection point.

•Gompertz-Laird model (Aggrey, 2002)
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FIGURE 1. Genetic algorithm spreadsheet setup for fitting the Gompertz equation with GeneHunter. Data are from Rogers et al. (1987) and
are used by permission.

Wt = Wo exp [(L/K)(1 − exp(−Kt)]

where Wt = the bird weight at time t, Wo = the initial
(hatch) weight, L = the instantaneous growth rate (per
d), and K = the rate of the exponential decay of the
initial specific growth rate.

The computer used for this study was a Dell Worksta-
tion PWS340 with 2.53 GHz Intel Pentium 4 CPU (central
processing unit) and a Microsoft Windows 2000 op-
erating system. Each growth model was formulated on
Microsoft Excel spreadsheets with 2 spreadsheets for
each growth model representing the data to be fit by
regression analysis and by GA. The significant digits
for the development of the PROC NLIN and GA models
were based on the significant digits for BW published
in the 2 papers mentioned previously.

The nonlinear regression method was PROC NLIN
of the SAS package. The initial values for each of the
nonlinear regression models were based, respectively,
on the published SAS methods of Rogers et al. (1987) and
the estimated model coefficients determined by Aggrey
(2002). The GA package used was GeneHunter (Ward
Systems Group, 1995). The GA ranges were heuristically

estimated from the values associated with the estimated
coefficients of the nonlinear regression. The specific
starting values and ranges for the 2 procedures are
shown in Table 1.

GA

The GA works with a fixed-size population of possible
solutions for a problem, called individuals, which are
evolving in time. A GA uses 3 principal genetic opera-
tors: selection, crossover, and mutation. During each
step (called a generation) in the reproduction process,
the individuals in the current generation are evaluated
by a fitness function, which is a measure of how well
the individual solution solves the problem. Then each
individual solution is reproduced in proportion to its
fitness; higher fitness means a greater chance to partici-
pate in mating (cross-over) and to produce an offspring.
A small number of newborn offspring (i.e., new solu-
tions) undergo the action of the mutation operator. After
many generations, only those individuals (solutions)
with the best genetics (from the point of view of the
fitness function) survive. The best individual provides
an optimum or near optimum solution to the problem.
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FIGURE 2. (A) Input data for genetic algorighm (GA) (GeneHunter)
determination. (B) Genetic algorithm (GeneHunter) options.

Genetic algorithms are essentially probabilistic. In
contrast, traditional optimization methods are essen-
tially deterministic. The probabilistic nature of evolu-
tionary computations allows them to explore areas in
the search space that may appear improbable at first
glance. Bad solutions (individuals) are not thrown out
from the population. Instead, they have some finite
probability of mating and of giving future generations
some genetic features that could be very useful in creat-
ing true elite offspring. Thus, the GA avoids local optima
and can find a true global solution to the problem.

The deterministic character of the traditional optimi-
zation techniques is the main reason they some times
settle on a local optimum. Sometimes, the elite individu-
als in a GA population may also get stuck at the local
optimum. However, the GA always has a good chance
of escaping this local optimum because of the mutation,
diversity operators, or both.

GA Example. The setup approach for fitting a fitness
function for the GA was based on a polynomial approxi-
mation example demonstrated in the GeneHunter soft-
ware package (Ward Systems Group, 1995).

FIGURE 3. Sigmoid growth curves determined by SAS NLIN (SAS)
and a genetic algorithm (GA) for Gompertz, logistic, and saturation
kinetics growth curves using male growth data from Rogers et al. (1987).
Data are from Rogers et al. (1987) and are used by permission.

GA Spreadsheet Setup. An example of the spread-
sheet setup for fitting the Gompertz equation using the
Rogers data is shown in Figure 1. The fitness function
for fitting the growth equations was a minimization of
the sum of squares of the observed BW and the BW
predicted by the growth equations. Fitness cell of the
spreadsheet was the EXCEL function SUMXMY2
(array_x, array_y), where array_x was the observed BW
and array_y was the predicted BW over the growth
period. The fitness equation for the spreadsheet was
located in Cell F16. Array_x was C19:C38 and array_y
was D19:D38. Graphs of the observed and Gompertz
BW and residuals were also located in the spreadsheet.
Constants developed for the equations were located in
cells B16:D16.

FIGURE 4. Sigmoid growth curves determined by SAS NLIN (SAS)
and a genetic algorithm (GA) for logistic and Gompertz-Laird growth
equations using male growth data from Aggrey (2002; data are used
by permission).
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TABLE 2. Resulting nonlinear regression and genetic algorithm coefficient calculations
for growth equations based on male BW data1

Nonlinear regression Genetic algorithm
Model coefficient estimate coefficient estimate

Logistic (Rogers et al., 1987)
Maximum response (A) 5,871 5,872
Initial response (B) 9 9
Rate constant (K) 0.96 0.96
Predicted (N) −735 −736

Gompertz (Rogers et al., 1987)
Maximum response (A) 5,987 5,987
Intercept (B) 70 70
Rate constant (K) 0.031 0.031

Saturation kinetics (Rogers et al., 1987)
Maximum response (A) 6,668 6,698
Intercept (B) 108 96
Rate constant (K) 13,057 11,832
Kinetic order (N) 2.3 2.2

Gompertz-Laird (Aggrey, 2002)
Hatching weight (Wo) 44.7 44.7
Initial growth rate (L) 0.0888 0.0888
Rate of decay (K) 0.0220 0.0220

Logistic (Aggrey, 2002)
Asymptotic weight (Wa) 2280.2 2279.9
Exponential growth rate (K) 0.0403 0.0403
Age at maximum growth (ti) 74.7 74.7

1Data are from Rogers et al. (1987) and Aggrey (2002) and are used by permission.

GA Input Interface. The GeneHunter graphical inter-
face for inputs to the GA is shown in Figure 2a. As
pointed out, the fitness function was located in F16,
the inputs (adjustable cells) in B16:D16. Ranges for the
parameters making up the equation are shown in the
list of chromosome ranges.

Intuitively, the GA problem setup can be viewed to
be similar to the set up for a linear program. That is,
there is an objective equation to be maximized or mini-
mized (or to find a specific value). The objective equa-
tion is subject to constraints, which may be in the form
of traditional constraints (less than, equal to or greater
than equations), a range of values, or functions.

GA Input Options. The selections used in the study
for the GA Options are shown in Figure 2b. A GA func-
tions by selective crossing of a population of potential
solutions. In this case a set of potential solutions (popu-
lation of solutions) was set at 500 with a chromosome
length of 32 bits. The chromosome length determines
the precision of the solution. The crossover rate was set
at 0.9. The crossover is applied to parent individuals
(solutions) from the current generation to produce 2
new offspring (or solutions). The crossover rate is the
probability that crossover will occur. The mutation rate
was set at 0.01. The mutation operator increases the
variability of the population by a random process of
changes in the population. The mutation rate is the prob-
ability of mutation. The generation gap was set at 0.99.
The value of (1 − generation gap) indicates how many
individual solutions will be kept from the previous gen-
eration. The Elitist strategy was chosen in which the
value (1 − generation gap) determines the number of
best (elite) individual solutions passing to the next gen-
eration without the crossover and mutation operators.
Also the Diversity operator was chosen which is a form

of slight mutation producing solutions that are only
slightly changed as opposed to major changes in solu-
tions that the mutation operator can produce.

Statistical Analysis. The GA was run using the “con-
tinue” button of the software (Figure 2a) until there
were no changes in the solution. After fitting the models
to the data using SAS NLIN and GeneHunter, the resid-
uals (difference between the predicted responses and
the observed responses) were determined (Tables 1 and
2). A comparison was made between the residuals deter-
mined for the models fit by nonlinear regression analy-
sis and by the GA.

The following hypothesis was tested for equality of
variances (Ho: σ2

nlr = σ2
ga), where nlr and ga represent

the nonlinear regression and GA methods, respectively.
The SAS PROC MEANS statement was used to deter-
mine the corrected sums of squares for the nonlinear
regression and GA models used in the following test
statistic (TS),

TS =
corrected sum of squareslarge

corrected sum of squaressmall
.

The larger value was placed over the smaller value for
determining the F statistic. The TS was compared with
an F table with 19, 19 for the degrees of freedom for the
Rogers et al. (1987) data and 27, 27 for the degrees of
freedom for the Aggrey (2002) data. Significance was
considered at P ≤ 0.05.

RESULTS AND DISCUSSION

Model Parameter Results

The results of coefficients determined by nonlinear
regression and GA are shown in Table 2. There were
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FIGURE 5. Residuals of the difference between observed male BW
(Rogers et al. 1987 data) and BW determined from growth equations
derived by SAS NLIN (SAS) and a genetic algorithm (GA). Data from
Rogers et al. (1987) are used by permission.

no differences in the coefficient values for the Rogers
Gompertz and Aggrey Gompertz-Laird growth equa-
tions. There was only a slight difference in the coeffi-
cients for the Rogers and Aggrey logistic growth
equations. There was a difference for each of the coeffi-
cient values for the Rogers saturation kinetics growth
equation. It should be pointed out that the length of

FIGURE 6. Residuals of the difference between observed male BW
(Aggrey, 2002; data used by permission) and BW determined from
growth equations derived by SAS NLIN (SAS) and a genetic algo-
rithm (GA).

time for running the GA was between 30 s and 19 min,
whereas the SAS NLIN procedure was a matter of sec-
onds. The slowness of the GA might be taken into con-
sideration depending on the complexity of the problem
and the advantages of the GA to provide a parallel
iteration for solving complex problems. The slowness
is due to the computationally intensive nature of the
GA as it evaluates each potential solution over many
different fitness cases. Improvement of the speed of the
GA is being researched (Banzhaf et al., 1998).

Model Predicted Responses

The observed and predicted BW predictions for the
models determined by nonlinear regression and GA are
shown in Table 3 for data from Rogers et al. (1987)
and Table 4 for Aggrey (2002). The results showed no
difference in the values for weights predicted by either
method for the logistic and Gompertz models. There
was a perceptible difference in the predicted values for
the saturation kinetics model, although there was no
statistical difference (P ≥ 0.05) in the residuals for the
nonlinear and GA determined growth models (Table 5).

Statistically there was no significant difference in the
variances for the 2 fitting methods (Table 5). The plotted
sigmoid curves for the 2 sets of data showed that there
is hardly a perceptible difference in the plotted growth
equations (Figures 3 and 4).

Residual Analysis

It is apparent from the residuals representing the dif-
ference between the observed and model predicted re-
sponses in Tables 3 and 4 that there is considerable
deviation in the model predicted responses from the
observed growth responses. Although the R2 values
were quite high, the residuals show a discrepancy be-
tween the observed and model predicted responses. Al-
though the GA fit the set equations equivalent to the
parameters obtained by nonlinear regression, it is evi-
dent that finding a model that fits the observed data is
still a goal that has not been achieved.

The plotted residuals for the 2 data sets show re-
sponses that have some oscillation in them (Figures 5
and 6). This oscillation, resembling a sine wave function,
has been observed by Maruyama et al. (1998). In their
studies, Maruyama et al. (1998) fit logistic, Gompertz,
von Bertalanffy, Richards, Weibull, and Morgan-Mercer
Flodin growth curves and found that all had a signifi-
cant lack of fit. The residuals also had a sine wave nature
to them. It appears that the fitting problem is not so
much a problem with the fitting method as it is with
the form of the equation being fit.

It was found that GA could successfully determine
the coefficients of growth equations. A disadvantage of
slowness in converging to the solution was found for
the current GA software. The advantage of GA over
traditional nonlinear regression is that only ranges need
be specified for the parameters of the growth equations,
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TABLE 4. Observed and predicted BW with residuals determined by nonlinear regression and genetic algorithms1

Logistic model Gompertz−Laird model

Nonlinear regression Genetic Algorithm Nonlinear regression Genetic algorithm

Age, d Observed weight, g Predicted Residual Predicted Residual Predicted Residual Predicted Residual

0 37.00 107.08 70.08 106.88 69.88 44.68 7.68 44.67 7.67
3 41.74 120.12 78.38 119.91 78.17 57.82 16.08 57.81 16.07
6 59.19 134.64 75.45 134.42 75.23 73.60 14.41 73.60 14.41
9 79.94 150.80 70.86 150.57 70.63 92.26 12.32 92.27 12.33

12 102.96 168.75 65.79 168.51 65.55 113.99 11.03 114.02 11.06
15 132.13 188.64 56.51 188.39 56.26 138.94 6.81 139.01 6.88
18 170.18 210.64 40.46 210.39 40.21 167.24 −2.94 167.33 −2.85
21 206.56 234.92 28.36 234.66 28.10 198.92 −7.64 199.06 −7.50
24 250.71 261.65 10.94 261.39 10.68 234.00 −16.71 234.20 −16.51
27 285.27 290.98 5.71 290.73 5.46 272.43 −12.84 272.69 −12.58
30 324.92 323.08 −1.84 322.83 −2.09 314.10 −10.82 314.44 −10.48
33 372.83 358.08 −14.75 357.84 −14.99 358.87 −13.96 359.30 −13.53
36 417.41 396.10 −21.31 395.87 −21.54 406.54 −10.87 407.08 −10.33
39 469.13 437.25 −31.88 437.03 −32.10 456.90 −12.23 457.55 −11.58
42 519.72 481.57 −38.15 481.38 −38.34 509.67 −10.05 510.46 −9.26
45 577.27 529.10 −48.17 528.94 −48.33 564.59 −12.68 565.51 −11.76
48 633.59 579.80 −53.79 579.68 −53.91 621.34 −12.25 622.43 −11.16
51 667.18 633.61 −33.57 633.52 −33.66 679.64 12.46 680.89 13.71
54 717.17 690.38 −26.79 690.34 −26.83 739.15 21.98 740.59 23.42
57 786.35 749.93 −36.42 749.93 −36.42 799.58 13.23 801.21 14.86
71 1,069.28 1,055.30 −13.98 1,055.56 −13.72 1,085.09 15.81 1,087.72 18.44
85 1,326.49 1,373.43 46.94 1,373.90 47.41 1,358.06 31.57 1,361.78 35.29
99 1,589.71 1,657.67 67.96 1,658.22 68.51 1,601.54 11.83 1,606.35 16.64

113 1,859.26 1,878.85 19.59 1,879.33 20.07 1,807.89 −51.37 1,813.70 −45.56
127 2,015.44 2,033.15 17.71 2,033.48 18.04 1,976.30 −39.14 1,982.99 −32.45
141 2,142.31 2,132.79 −9.52 2,132.95 −9.36 2,109.99 −32.32 2,117.42 −24.89
155 2,220.54 2,193.95 −26.59 2,193.97 −26.57 2,213.97 −6.57 2,222.01 1.47
170 2,262.63 2,232.25 −30.38 2,232.16 −30.47 2,298.54 35.91 2,307.09 44.46
Model R2 0.999 0.999 0.997 0.999
Residual mean 9.49 9.50 −1.47 0.58
Residual SD 43.17 43.17 20.22 19.96

1Data are from Aggrey (2002) and are used by permission.

whereas estimates of the coefficients need to be deter-
mined, and in some programs the derivatives of the
growth equations need to be identified. Depending on
the goal of the research, solving multivariable complex
functions with an algorithm that considers several solu-

TABLE 5. Statistical results for comparing residuals of growth equations calculated
with nonlinear regression and genetic algorithms

Residual1,2 df Corrected SS F value3

Growth data from Rogers et al. (1987)
R_LogisticSAS 19 107,490.21 1.000 NS
R_LogisticGA 19 107,488.69
R_GompertzSAS 19 62,275.65 1.000 NS
R_GompertzGA 19 62,243.30
R_SatKinSAS 19 62,478.80 1.009 NS
R_SatKinGA 19 61,926.17

Growth data from Aggrey (2002)Growth Data
R_LogSAS 27 50,293.25 1.000 NS
R_LogGA 27 50,324.25
R_Gompertz-Laird SAS 27 11,034.89 1.025 NS
R_Gompertz-Laird GA 27 10,763.67

1Residuals (R_model) represent the comparison of the BW prediction of each respective model minus the
observed BW.

2SAS indicates the model was determined by the SAS nonlinear procedure (Proc NLIN). GA indicates that
the model parameters were determined with a genetic algorithm. SatKin = saturation kinetics.

3F-test statistic for the hypothesis of equal variances for the residuals of the SAS models compared to the GA
models was determined by putting the larger corrected sum of squares over the smaller corrected sum of squares
(SS) and comparing to an F table with 19 df and 27 df for the data from Rogers et al. (1987) and Aggrey (2002),
respectively. Data from Rogers et al. (1987) are used by permission.

tions at the same time in an evolutionary mode can
be considered an advantage especially when there is a
chance for the solution to converge on a local optimum
when a global optimum is desired.
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